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• Stephens, Matzke, and Hayes (2019) misinterpreted and misapplied state-trace analysis.
• They reported no evidence either for or against single or multiple systems.
• Their conclusion that a single-system account is sufficient was preordained.
• Their use of parsimony contradicts state-trace analysis and the field of statistics.
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a b s t r a c t

After using state-trace analysis to reanalyze results from 63 different categorization studies, Stephens,
Matzke, and Hayes (2019) concluded that ‘‘the evidence for two distinct category learning systems is
much more limited and inconsistent’’ (p. 14) than Ashby and Valentin (2017) had previously claimed.
This reply shows that Stephens et al. (2019) misinterpreted and misapplied state-trace analysis. They
report no evidence that favors a single learning system over multiple systems. They acknowledge that
they would favor a single-system account, regardless of how their re-analyses had turned out. They
justify this bias by claiming that single-system theories are more parsimonious than dual-systems
theories, but they use a definition of parsimony that is inconsistent with state-trace analysis, and
with the entire statistical field of model selection. By any accepted definition of parsimony, the dual-
systems COVIS model is more parsimonious than the single-system model they favor in the current
applications. The correct interpretation of their results is that none of the 63 studies they examined,
by itself, definitively identifies the number of parameters that are varying across the conditions of that
study. However, this was never an issue of contention, and was stated explicitly in prior publications.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Stephens, Matzke, and Hayes (2019, hereafter referred to as
SMH) used state-trace analysis to reanalyze results from many
different published reasoning and category-learning studies. The
category-learning database included 63 studies (reported in 28
different articles), many of which were run in my lab. This reply
focuses on the SMH re-interpretation of these 63 studies.

The 28 category-learning articles were all testing predictions
of the dual-systems model of category learning called COVIS
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998) by examining
performance in rule-based (RB) and information-integration (II)
categorization tasks. SMH concluded that ‘‘the troubling con-
sequence (of their reanalysis) is that many interaction effects
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cited as evidence for multiple processes may have been over-
interpreted’’ (p. 4), and that ‘‘these state-trace analyses show
that the evidence for two distinct category learning systems
is much more limited and inconsistent than is implied by the
impressive list of dissociations presented by Ashby and Valentin
(2017)’’ (p. 14). They also concluded that ‘‘instead of two learning
systems, a single latent variable such as ‘degree of learning’ – or
a dimension-weighting parameter as included in the Generalized
Context Model (GCM) of categorization (Nosofsky, 1986) – would
often be sufficient to account for the results’’ (p. 14).

In this reply, I show that SMH misinterpreted and misapplied
state-trace analysis. Their re-analyses found no evidence favoring
a single learning system over multiple systems, nor did they
identify any weaknesses or mispredictions of any multiple sys-
tems theories. In fact, state-trace analysis was never designed to
identify the number of underlying systems, and it is known that
there are no state-trace plots that can provide any information
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about this issue (Ashby, 2014; Dunn, Kalish, & Newell, 2014).
Despite these facts, SMH acknowledged that they would have
concluded that a single-system account should be favored over
COVIS, regardless of how their re-analyses turned out. As a result,
their conclusions were preordained. They justify this bias by
claiming that single-system theories are more parsimonious than
dual-systems theories, without ever defining what they mean by
parsimony. In the third section, I show that their use of this term
is inconsistent with how state-trace analysis defines parsimony,
and with the entire statistical field of model selection. If any of
these usual definitions of parsimony are adopted, then in the
applications that SMH consider, the dual-systems COVIS model
is more parsimonious than the single-system GCM.

The correct interpretation of the SMH results is that none of
the 63 studies they examined, by itself, definitively identifies the
number of underlying free parameters that are varying. However,
this was never an issue of contention. For example, this has
been known for at least 60 years and in the case of the 28
articles examined by SMH, made explicitly in prior publications.
Furthermore, the number of free parameters that are varying is
irrelevant to the debate about whether RB and II category learning
are mediated by one or two systems, or whether COVIS or the
GCM provides the better account of these data.

State-trace analysis (Bamber, 1979; Dunn & Kirsner, 1988)
plots performance on two tasks across various experimental con-
ditions against one another and examines the resulting scat-
terplot. On the basis of the type of scatterplot that emerges,
inferences are then made about the number of underlying free
parameters that are varying across the different conditions. For
example, suppose the same participants complete two tasks, T1
and T2. Let P(T1) and P(T2) denote their performance on tasks
T1 and T2, respectively. A state-trace analysis begins by plotting
values of P(T1) and P(T2) against each other (e.g., with values
of P(T2) on the ordinate and values of P(T1) on the abscissa).
Although many different outcomes are possible, SMH focus on
only two. In their opinion, ‘‘the crucial question is whether the
state-trace is ‘one-dimensional’, with all data points falling on
a single monotonically increasing (or decreasing) curve. If so,
the data points are consistent with a single underlying latent
variable’’ (p. 6). They describe the other possibility as follows: ‘‘if
instead the state-trace is two-dimensional (i.e., some of the data
points reliably depart from monotonicity), the data are inconsis-
tent with any model based on a single latent variable. Thus, they
may support a dual-process account’’ (p. 6).

These are both misinterpretations or mis-statements of state-
trace analysis. Section 2 considers the first claim — that is, about
‘one-dimensional’ state-trace plots, Section 3 considers SMH’s use
of the word parsimony, and then Section 4 considers the claims
of SMH about ‘two-dimensional’ plots.

2. One-dimensional state-trace plots

The claim that one-dimensional state-trace plots ‘‘are consis-
tent with a single underlying latent variable’’ (p. 6) is a misleading
interpretation of state-trace analysis. The correct mathematical
statement is that if a state-trace plot is one-dimensional then
no inferences are possible because the data could have been
generated by a model that is characterized by any number of
latent variables (Ashby, 2014; Bamber, 1979; Dunn & Kirsner,
1988). For example, Fig. 2A shows a one-dimensional state-trace
plot that was produced by a model with 3 free parameters. So
a state-trace analysis can only be used to rule out a subset of
competing models if the state-trace plots are two-dimensional
because these are the only types of plots that make any inferences
possible about the underlying processes.

SMH reanalyzed data from 63 different published categoriza-
tion studies using a state-trace approach. In most cases they

concluded that the state-trace plot was one dimensional. Thus,
their results indicate that a state-trace analysis can add nothing
new to this literature because a one-dimensional plot neither
supports nor rules out any underlying model.

So what do the SMH state-trace analyses contribute? Well,
they do show that each of the 63 different data sets, when
considered in isolation, does not conclusively identify the number
of underlying latent variables that are varying. If this was a novel
inference, then it would make a useful contribution. But in almost
all cases, the 63 studies report a single dissociation, and it has
been known for at least 60 years that a single dissociation, by
itself, is insufficient to rule out all alternative interpretations
(e.g., Teuber, 1955). Furthermore, to my knowledge, none of the
articles reporting the 63 studies claimed that their study, by itself,
ruled out all alternative interpretations — nor even all single-
system interpretations. For example, Ashby (2014) noted that ‘‘it
is also important to acknowledge that more traditional dissocia-
tion logic is also flawed, in the sense that it is rarely the case that
any particular dissociation (or lack thereof) can conclusively favor
or rule out either one or multiple systems’’ and also that ‘‘a careful
examination of each dissociation in isolation would likely show
that that one result, by itself, was, at best, only weakly diagnostic
with respect to the single- versus multiple-systems question’’ (p.
943). So the SMH analyses are a solution in search of a problem.
They make no new theoretical or empirical contribution. They
merely reinforce a point that was always universally accepted.

So if the 63 categorization studies are not each definitive about
the number of underlying processes, then what contribution do
they make? Suppose you are trying to determine if a coin is fair
or biased towards heads. Any one coin toss provides inconclusive
evidence about this question. But if 63 tosses in a row all come
up heads, then collectively all these data strongly suggest that
the coin is biased and not fair. Science is a cumulative process.
It is highly unlikely that any single study will prove definitive,
especially in psychology. So a converging operations approach is
required. As Ashby (2014) noted ‘‘as more and more data are
collected, it is vital to consider what theory or model is most
consistent with the entire body of available data’’ (p. 943). This is
why Ashby and Valentin (2017) did not claim that any one of the
63 studies, by itself, was definitive, but rather that ‘‘collectively,
these results also provide strong evidence that learning in these
tasks is mediated by separate systems’’ (p. 175; emphasis added).

SMH reject this approach to science. They make no attempt to
show that any single-system model can account for any of the
data from the 63 studies they examined, nor do they identify
any weaknesses or mispredictions of COVIS. Instead, they argue
that until some single experiment is produced that definitively
rules out all other interpretations, dual-systems models like CO-
VIS (Ashby et al., 1998) should be rejected in favor of some
unspecified single-system account — despite the fact that COVIS
easily accounts for the results of all 63 studies simultaneously.
In my opinion, the SMH approach to science – that is, of waiting
for the perfect experiment – would prevent psychology from ever
making scientific progress.

SMH interpret their results to favor single-system accounts
of category learning over dual-systems — despite their failure
to produce any mathematical, theoretical, logical, or empirical
evidence that favors a single system. This bias is evident in
their misleading interpretation that one-dimensional state-trace
plots ‘‘are consistent with a single underlying latent variable’’
(p. 6). Note how much the tenor of the SMH article would have
changed if they had instead written the following equally valid
interpretation of a one-dimensional plot: a one-dimensional plot
is consistent with two underlying latent variables; or if they
had written that a one-dimensional plot is consistent with 10
underlying latent variables.
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So despite the fact that no inferences are possible from a one-
dimensional state-trace plot, they interpret this result as favoring
the single-system GCM over the dual-systems COVIS. But in ad-
dition, they also argue that two-dimensional state-trace plots
‘‘may also be consistent with ‘single-process’ accounts that posit
multiple parameters’’ (p. 18). More specifically, they recommend
endorsing the GCM over COVIS if the state-trace plot is either
one-dimensional or two-dimensional. Since, by their definition,
these are the only two possible outcomes of a state-trace analysis,
their conclusion that the GCM is a better model of categorization
than COVIS was preordained. By their own admission, there was
no possible set of outcomes that they could have observed that
would have led them to a different conclusion. So why even
complete the analyses?

3. Parsimony

Why are SMH biased toward a single-system account of cate-
gory learning? Their article allocates only one word to explain
this bias — parsimony. Specifically, SMH argue that in cases
where the state-trace plot allows no inferences, then ‘‘a single-
process theoretical account may be preferred on the grounds of
parsimony’’ (p. 18). So according to SMH, parsimony trumps all,
even the data from 63 separate studies. Given the extraordinary
importance they assign to this principle, it is unfortunate that
they did not even allocate one sentence to explain how they
interpret parsimony in the present context.

Obviously, for any set of empirical results, we should seek
the simplest possible theoretical account. But is a single-system
model always more parsimonious than a dual-systems model?
SMH seem to believe so, even in cases in which the single-
system model has the same number of free parameters as the
dual-systems model. For example, they write that ‘‘in category
learning a two-dimensional state-trace could reflect the
dimension-weighting and response-bias parameters in the (GCM)
Nosofsky (1986), which would generally be interpreted as a
‘single-process’ account’’ (p. 18). So SMH define parsimony ac-
cording to the number of underlying systems, not the number of
underlying parameters. In fact, they explicitly state that in any
test of COVIS ‘‘the latent variables are the explicit and proce-
dural learning systems’’ (p. 10). Thus, they have no interest in
how many free parameters are varying, but only the number of
underlying systems that are presumed.

Unfortunately, the SMH definition of parsimony contradicts
the definition of parsimony assumed by their chosen method
of data analysis — namely, state-trace analysis. Bamber (1979)
made it clear that state-trace analysis was designed only to iden-
tify cases where more than one free parameter is varying. As such,
state-trace analysis knows nothing about the architecture of the
underlying models. So at best, all one can conclude about a one-
dimensional state-trace plot is that such data are not enough to
rule out the possibility that only one free parameter is varying.
But that single free parameter could be varying in a model that
postulates one system, two systems, or 10 systems. According to
state-trace analysis, all these accounts are equally parsimonious.

Parsimony is a well-established and highly-valued principle
within the statistical field of model selection. It is universally
recognized that all else being equal, model selection should favor
the more parsimonious model. Parsimony is operationalized in
the AIC and BIC goodness-of-fit statistics as the number of free
parameters. In these methods of model selection, models pay a
penalty that increases with the number of free parameters, and a
model with more free parameters is selected only if its absolute
fit exceeds its competitors by more than the extra penalty it
pays. Neither AIC nor BIC assigns any weight to the architecture
of the models. Single- and dual-systems models with the same

number of free parameters pay the same penalty and therefore
are considered equally parsimonious.

More sophisticated model selection statistics, such as negative
free energy and minimum description length, penalize for mathe-
matical flexibility as well as the number of free parameters. Thus,
among models with the same number of free parameters, the
model that is mathematically most rigid is considered most par-
simonious. However, there is no reason to assume that a single-
system model is more mathematically rigid than a dual-systems
model with the same number of free parameters. It is easy to
construct counterexamples in which the single-system model is
more flexible. Therefore, in the statistical field of model selection,
the number of systems the model postulates is irrelevant to
parsimony.

Thus, SMH endorse a unique definition of parsimony that is in-
consistent with state-trace analysis and with all current statistical
methods for model selection. The SMH parsimony criterion seems
to suggest that if we encounter response-time data that are fit
equally well by serial and parallel models, then we should favor
the serial model because it postulates that only one system is
active at any one time. And because of its presumed greater parsi-
mony, SMH seem to predict that a bias toward singleness should
be evident in nature. However, such a bias is not obvious. For
example, why do we have multiple sensory systems? And even
within the single modality of vision, why do we have separate
photopic and scotopic systems, or dorsal and ventral streams?

Unfortunately, SMH conflate systems and free parameters.
State-trace analysis is and always was designed to provide infor-
mation about the number of underlying free parameters. It was
never proposed as a method that could say anything about the
architecture that produced the state-trace plot, nor are there any
conditions in which it could ever be used in this way.

Not all applications of state-trace analysis define parsimony in
terms of the number of underlying systems. For example, Dunn
et al. (2014) acknowledged that identifying the number of sys-
tems ‘‘is an impossible task for any statistical procedure or infer-
ential logic, because the concept of a ‘system’ is itself not well
defined’’ (p. 952). Even so, the question of how many systems
a model assumes is critical to SMH because their idiosyncratic
definition of parsimony depends on the ability to identify the
number of underlying systems. But whether one looks at the
architecture proposed by the GCM, COVIS, or any other model
and sees 1, 2, or 10 different systems is irrelevant to every
point made in this article. First, how one defines a system is
irrelevant to state-trace analysis. The original pioneering article in
which Bamber (1979) developed state-trace analysis never even
mentions underlying systems. In contrast, it mentions parameters
many times because the method was developed to provide infor-
mation about the number of underlying free parameters, not the
number of underlying systems. Second, the definition of system
is irrelevant to the statistical literature on model selection, and
therefore to all current statistical definitions of parsimony. In the
literature on model selection, parsimony depends on the number
of free parameters in a model, and sometimes also on the model’s
mathematical flexibility, but never on the number of underlying
systems that define the model.

I typically describe COVIS as assuming two systems, but I
personally have no interest in the semantics of how one defines
a ‘‘system’’. There is no definition of ‘‘system’’ that would change
any COVIS predictions, and therefore how one defines a ‘‘sys-
tem’’ has no empirical consequence. So whereas the definition
of a system is of great concern to SMH, it is of no concern
whatsoever to state-trace analysis or to any accepted definitions
of parsimony. More importantly, however, a debate about how
the word ‘‘system’’ should be defined could never improve our
understanding of human category learning.
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Although SMH never define parsimony, for the remainder of
this article, I will adopt the operational definition of parsimony
that forms the basis of state-trace analysis, and the model selec-
tion statistics AIC and BIC — that is, that the most parsimonious
model is the one with the fewest free parameters.

Even a cursory reading of the articles cited by SMH reveals that
for the state-trace plots they constructed, the dual-systems model
COVIS is more parsimonious than the single-system GCM favored
by SMH. This is because many of the dissociations that SMH con-
clude are nondiagnostic were predicted by COVIS with zero free
parameters. For example, the Ashby and Valentin (2017) article
cited by SMH clearly states that many of the dissociations are
‘‘parameter-free a priori predictions’’ (p. 158) of COVIS. First, CO-
VIS predicts that a feedback delay must interfere with II learning
more than with RB learning, whereas the GCM makes no predic-
tions about how feedback delay might affect either task.1 Second,
COVIS predicts that a dual-task that recruits working memory
must interfere with RB learning more than II learning, whereas
the GCM makes no predictions about how a dual task might affect
either task. Third, COVIS predicts that switching the locations of
the response buttons after initial learning must interfere with II
performance more than RB performance, whereas the GCMmakes
no predictions about how a button switch might affect either
task. Fourth, COVIS predicts that limiting time and attention for
feedback processing must interfere with RB learning more than
II learning, whereas the GCM makes no predictions about how
feedback processing might affect either task. Fifth, COVIS predicts
that unsupervised II learning must be worse than unsupervised
RB learning, whereas the GCM makes no predictions that remov-
ing feedback should differentially affect either task. Sixth, COVIS
predicts that analogical transfer must be worse in II tasks than
in RB tasks, whereas the GCM makes no predictions about the
differential success of analogical transfer in RB and II tasks. All
of these COVIS predictions have been empirically supported in
replicated experiments (for a review, see Ashby & Valentin, 2017).

This list could be extended. Currently, there are somewhere
around 27 different dissociations predicted by COVIS that have
been empirically confirmed (for a review of most of these, see
Ashby & Valentin, 2017). The GCM may or may not be able to
account for each of these dissociations post hoc by manipulating
one or more free parameters (in most cases, this is unknown). But
even if it could, the choice is between an account that predicted
these results MUST occur (i.e., with zero free parameters) versus
an account that made no a priori predictions and was only able to
fit the state-trace curves post hoc by manipulating one or more
free parameters. Which account is more parsimonious?

Furthermore, by arguing in favor of the GCM over COVIS solely
on the basis of a misguided notion of parsimony, SMH also ignore
an enormous amount of other relevant research. First, Ashby
and Rosedahl (2017) showed that the GCM is mathematically
equivalent to a special case of the procedural system of COVIS.
In addition to the procedural system, COVIS also postulates an
explicit rule-learning system. So when SMH hypothesize that all
categorization behavior is consistent with the GCM, then they
are assuming that all categorization behavior is procedural or
similarity-based and therefore that humans have no special rule-
learning abilities. But a rule is a set of necessary and sufficient
conditions, and these conditions do not have to be similarity-
based. For example, slightly rounding the corners of one of two
identical squares has almost no effect on perceptual similarity,
but moves the rounded square out of the rectangle category. So
the SMH hypothesis that the GCM is sufficient to account for

1 Of course, there are boundary conditions for all of these predicted dissocia-
tions. For example, a feedback delay of one year would likely abolish all learning,
both in RB and II tasks. So technically, in each case these predictions are weak
orders, rather than strict orders.

all categorization behavior is sharply inconsistent with the large
literature on human rule-guided behavior (e.g., Bunge & Wallis,
2008).

Second, COVIS hypothesizes that optimal performance in RB
tasks is mediated by a broad neural network that includes the
prefrontal cortex, the anterior cingulate, and the hippocampus,
whereas optimal performance in II tasks depends primarily on
the basal ganglia, and especially the striatum. In contrast, except
for Ashby and Rosedahl (2017), the GCM has no neuroscience
underpinnings. Thus, rejecting COVIS in favor of the GCM on the
basis of parsimony ignores results of the animal lesion studies,
animal neurophysiology studies, human neuropsychology studies,
and human functional neuroimaging studies that support the
neuroscience predictions of COVIS.

4. Two-dimensional state-trace plots

As mentioned earlier, SMH interpret a two-dimensional state-
trace plot to mean that ‘‘the data are inconsistent with any model
based on a single latent variable’’ (p. 6). As an example of a model
that postulates a single latent variable they cite applications
of the GCM in which only the dimension-weighting parameter
varies. Fig. 1, which is adapted from Ashby (2014), shows four
different state-trace plots predicted by the GCM in applications
to RB and II experiments where only one parameter is varying.
In panel A, only the GCM overall attention parameter c varies.
In panels (B), (C), and (D) only the dimension-weighting param-
eter w varies. Note that the state-trace plots in panels (B), (C),
and (D) are all two-dimensional, which clearly shows that SMH
misinterpreted state-trace analysis. The exact same single-latent
variable model they recommend clearly falsifies their claim that
two-dimensional plots ‘‘are inconsistent with any model based
on a single latent variable’’ (p. 6). When only a single param-
eter varies, the GCM can produce any type of state-trace plot.
Thus, when state-trace analysis is applied to data from RB and
II categorization experiments, no inferences about the number of
underlying free parameters is possible — regardless of whether
the state-trace plot is one- or two-dimensional.

But perhaps state-trace analysis is better at identifying the
number of underlying systems (i.e., when we accept the SMH
definition of a system). Ashby (2014) also examined this issue.
Fig. 2, which is also adapted from Ashby (2014), shows state-
trace plots produced by the single-system GCM (left column),
and by a simplified version of the dual-systems model COVIS
(right column) in a hypothetical experiment in which RB and II
categories are learned under single-task and dual-task conditions.
Note that both models unambiguously predict either one- or two-
dimensional state-trace plots. So neither empirical finding pro-
vides any information about the number of underlying systems.

Obviously, Figs. 1 and 2 are highly relevant to the entire
premise of the SMH article, especially since all state-trace plots
shown in these figures are from the same RB and II tasks used
in the 63 studies re-analyzed by SMH. Even so, SMH chose not
to mention (or cite) the Ashby (2014) article — despite strong
evidence that they knew of its existence. For example, they cite
a comment on Ashby (2014), which was written by some of the
editors of the special issue in which SMH appeared. So if they
read the articles they cited, then they knew of these figures.

The key issue is monotonicity. Specifically, a model with one
freely varying parameter must predict a one-dimensional state-
trace plot only if performance on both tasks increases (or de-
creases) monotonically with increases in that parameter (see
e.g., Ashby, 2014, for a proof). Ashby (2014) showed that if this as-
sumption is invalid then a model with one freely varying parame-
ter can predict any state-trace plot (e.g., see Fig. 1). Although SMH
acknowledge that their analyses depend on this monotonicity
assumption, they never discuss its possible validity.
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Fig. 1. Some state-trace plots produced by the GCM in applications to RB and II experiments in which only one parameter varies across tasks T1 and T2 . P(T1) and
P(T2) are both categorization accuracy. (A) Only the GCM overall attention parameter c varies. (B), (C), and (D) Only the dimension-weighting parameter w varies.
Source: Adapted from Ashby, F.G., 2014. Is state-trace analysis an appropriate tool for assessing the number of cognitive systems? Psychonomic Bulletin & Review, 21,
935–946.

Fig. 2. State-trace plots from the GCM (left column) and a simplified version of COVIS (right column) from RB and II experiments under single-task and dual-task
conditions. (A) Three parameters vary across tasks and conditions. (B) Only one parameter varies across tasks and conditions. (C) & (D) Two parameters vary across
tasks and conditions.
Source: Adapted from Ashby, F.G., 2014. Is state-trace analysis an appropriate tool for assessing the number of cognitive systems? Psychonomic Bulletin & Review, 21,
935–946.
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There surely are empirical domains in which it is reason-
able to assume that performance is monotonic with all possible
parameters that might be varying across tasks and conditions.
As described by Bamber (1979), state-trace analysis can make
useful contributions to any such field. However, category learning
is most clearly NOT such a domain because in virtually all popular
categorization models, performance changes nonmonotonically
with one or more parameters. In fact, I don’t know of a single
popular model for which this is not true.

For example, consider the SMH recommendation that ‘‘instead
of two learning systems, a single latent variable such as ... (the)
dimension-weighting parameter as included in the (GCM) Nosof-
sky (1986) – would often be sufficient to account for the results’’
(p. 14). The optimal value of the GCM dimension-weighting pa-
rameter (i.e., w) in the II task is w = .5 (equal attention allocated
to both dimensions). Thus, as w increases from 0 to 1, the GCM
predicts that II accuracy will increase until w = .5 and then
decrease as w continues to rise. So, as is evident in Fig. 1, varying
the single dimension-weighting parameter in the single-system
GCM produces two-dimensional state-trace plots. Thus, despite
the claims of SMH, the dimension-weighting parameter of the
GCM is NOT sufficient to account for the many one-dimensional
state-trace plots they report.

Virtually all popular categorization models include parame-
ters that violate the SMH monotonicity assumption. First, many
categorization models include a dimension-weighting parameter
that operates identically as in the GCM. Included in this list are
exemplar models, prototype models, and decision-bound mod-
els (e.g., see Ashby & Maddox, 1993). Second, decision bound
models predict that accuracy is maximized in any categorization
task when the decision bound has some specific intermediate
intercept and curvature. Thus, decision bound models predict that
accuracy will increase to some peak value and then decrease
as the intercept increases from −∞ to ∞. A similar prediction
occurs for the amount the decision bound curves (e.g., from neg-
ative to positive). Third, the COVIS rule-learning model predicts
that accuracy will increase with the parameter that measures
dopamine levels and then decrease when these levels pass an op-
timal value. Fourth, all connectionist and neural network models
predict that for any given amount of training, accuracy increases
with the value of the learning-rate parameter up to a point, and
then performance will deteriorate if the learning rate becomes
too large. Thus, if any of these parameters vary across tasks
or conditions, then the resulting state-trace plot should be two
dimensional — even if that parameter is the only one that varies.

So to rule out the possibility that a single underlying pa-
rameter is varying from a two-dimensional state-trace plot, it is
necessary to assume that no parameters of this type are varying
across any of the experimental conditions or tasks. This is highly
unlikely in the categorization studies re-analyzed by SMH. This is
because the two tasks in these studies are RB and II categorization
tasks. In many of the RB tasks, only one stimulus dimension is
relevant, whereas two dimensions are equally relevant in the II
task. Thus, any model with a dimension-weighting parameter will
predict changes in this parameter across tasks, and as mentioned,
in virtually all models with such a parameter, performance is
nonmonotonic with the dimension weight. For this reason alone,
applying state-trace analysis to data from RB and II categorization
tasks is a misapplication of the method.

5. Conclusions

COVIS has been an extremely successful theory because it has
encouraged many new studies that otherwise would not have
been run. This includes virtually all of the 63 categorization stud-
ies examined by SMH. For example, no prior theory predicted that

delaying feedback could have different effects for different types
of category structures, so without COVIS, it is likely that we would
not now know that feedback delays impair II learning more than
simple RB learning. Even so, it is important to acknowledge that
COVIS can be improved — as is true of all theories in psychology.
Of course we know that COVIS is incomplete because it leaves
out an enormous amount of detail, but it is likely wrong in more
fundamental ways. Certainly the theory has evolved since it was
first proposed 20 years ago, and this process is likely to continue.

Theories are tools to motivate new research, which will in-
evitably point to flaws in the current theories, and hopefully lead
to new and better theories, at which point the cycle can begin
again. This is the scientific process and the reason that I welcome
alternative theories to COVIS. The lack of serious alternatives has
slowed progress in the field. Unfortunately, however, SMH do not
offer any alternative theories of category learning. Although they
argue for a single learning system, and make off-hand suggestions
that the GCM might be the best model, they fail to show that
the GCM or any other single-system model can account for even
one of the 63 studies they examine. Furthermore, neither do they
identify any weaknesses or mispredictions of COVIS. Instead, their
only empirical contribution is to point out that none of the 63
studies they examined conclusively identify the number of un-
derlying free parameters — a point that was never in contention
and that was made explicitly in previous publications. Thus, SMH
make no new empirical contribution.

Even worse, however, is that their theoretical recommenda-
tions could actually harm the field. Specifically, they argue that
(1) psychology should adopt a definition of parsimony that con-
tradicts state-trace analysis and all definitions from the statistical
field of model selection, and (2) no new theories should be
endorsed until a single experiment is produced that definitively
rules out all other accounts. In my opinion, adopting these pro-
posals would effectively halt all scientific progress in psychology.
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