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A Stochastic Version of General
Recognition Theory

F. Gregory Ashby

University of California, Santa Barbara

General recognition theory (GRT) is a multivariate generalization of signal
detection theory. Past versions of GRT were static and lacked a process inter-
pretation. This article presents a stochastic version of GRT that models
moment-by-moment fluctuations in the output of perceptual channels via a
multivariate diffusion process. A decision stage then computes a linear or
quadratic function of the outputs from the perceptual channels, which drives
a univariate diffusion process that determines the subject's response. Condi-
tions are established under which the stochastic and static versions of GRT
make identical accuracy predictions. These equivalence relations show that
traditional estimates of perceptual noise may often be corrupted by decisional
influences. � 2000 Academic Press

General recognition theory (GRT), which was first introduced by Ashby and
Townsend (1986), is a multivariate generalization of signal detection theory (e.g.,
Green 6 Swets, 1966; Tanner 6 Swets, 1954). GRT has been used successfully to
model perceptual and decisional processing in stimulus identification (Ashby 6 Lee,
1991, 1992), categorization (Ashby, 1992; Ashby 6 Gott, 1988; Ashby 6 Maddox,
1990, 1992, 1993; Maddox 6 Ashby, 1993), similarity judgment (Ashby 6 Perrin,
1988; Perrin 6 Ashby, 1991), preference judgment (Perrin, 1992), same-difference
judgment (Thomas, 1996), and speeded classification (Ashby 6 Maddox, 1994;
Maddox 6 Ashby, 1996). When GRT is used to model categorization behavior, it
is often called decision bound theory.

GRT assumes that the percept elicited by a stimulus on any single trial of a
categorization or identification experiment can be represented as a point in a multi-
dimensional perceptual space. Over trials, however, stimulus and perceptual noise
are assumed to induce variability in the percept associated with every specific stimulus
(e.g., Ashby 6 Lee, 1993; Green 6 Swets, 1966: Tanner, 1956; Tanner 6 Swets,
1954). As a result, the appropriate experiment-level representation of a stimulus is a
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multivariate probability distribution. The subject is assumed to divide the perceptual
space into regions and to associate a response label with each region. On each trial,
the subject notes which region the percept is in and then emits the associated response.
Ashby, Alfonso-Reese, Turken, and Waldron (1998) proposed a neuropsychological
version of the theory and described how the decision bounds might be learned.

Although GRT is quite general, in the sense that it can be used to account for data
from a great variety of experiments, it is a static theory and does not make response
time (RT) predictions. This article develops a stochastic version of GRT that makes
RT predictions, as well as predictions about response accuracy. The dynamic version
of GRT replaces the static point representation of the percept, assumed by classical
GRT, with a multivariate stochastic diffusion process. Among other results, I will
establish conditions under which the static and dynamic versions of GRT make iden-
tical accuracy predictions. This result is important because it shows that traditional
estimates of perceptual noise (i.e., obtained either from GRT or from signal detection
theory) may often be corrupted by decisional influences.

GENERAL RECOGNITION THEORY

As mentioned above, GRT is a multivariate generalization of signal detection
theory that has been used successfully to account for data from a wide variety of
different experimental tasks. This article focuses on categorization or identification
tasks in which there are two response alternatives. Under these conditions, GRT
assumes that on any single trial, the percept elicited by stimulus i can be repre-
sented by the vector x$i=[x1i , x2i , ..., xni], where x ji is the perceived value of
stimulus i on dimension or component j. Because of stimulus and neural noise, xi

is assumed to be a random vector that varies across trials. In most applications of
GRT, the distribution of xi is assumed to be multivariate normal. Let +Si denote the
vector of mean percepts elicited by stimulus i, where the S indicates that this is the
static or classic version of the model, and let 7Si denote the variance�covariance
matrix of the stimulus i perceptual distribution.

GRT assumes that to select a response, the subject partitions the perceptual
space into two (not necessarily contiguous) regions and associates a different
response with each region. On each trial, the subject determines which region the
percept is in and then emits the associated response. The decision bound is the set
of all points that separate the two regions. In most applications of GRT, it is
possible to define a function yi=h(xi) with the property that

>0, for all xi in one response region

yi=h(x i){=0, for all xi on the decision bound

<0, for all xi in the other response region.

As a consequence, the decision rule: ``Respond A to all points on one side of the
bound and B to all points on the other side,'' is equivalent to the rule:

Respond A if yi>0, and respond B if yi<0.
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Because the function yi=h(xi) discriminates between stimuli on either side of the
decision bound, it is often called a discriminant function. Thus, the probability of
responding A on trials when stimulus i was presented equals

P(A | i)=P[ yi>0 | i].

For example, if the subject uses a linear decision bound, then there exists some
vector of constants bS and some scalar cS such that

yi=b$Sx i+cS+=S ,

where =S is a random variable (independent of xi) with zero mean and variance _2
S

that represents criterial noise. Therefore, the mean of yi is b$S +Si+cS and the
variance is b$S 7Si bS+_2

S . So, if the distribution of xi is multivariate normal and
the distribution of =S is normal, then

P(A | i)=8 \ &b$S +Si&cS

- b$S 7SibS+_2
S
+ ,

where 8 is the cumulative standard normal (i.e., Z) distribution function (see, e.g.,
Ashby, 1982, for more details).

In the absence of criterial noise, it turns out that with linear bounds, | yi | is
monotonic with the distance between the percept and the decision bound (e.g.,
Ashby 6 Maddox, 1992). We could, therefore, create a new variable Di , defined as
the signed distance from the percept to the decision bound��that is, for any point
above the bound, Di is distance-to-the-bound, but for any point below the bound,

FIG. 1. The classic GRT model. Figure 1a shows the perceptual representation of stimulus i, which
in this example is assumed to vary on two perceptual dimensions, x1 and x2 . The ellipse is a contour
of equal likelihood from the multivariate perceptual distribution that is the experiment-level perceptual
representation, and the point is an example of the perceptual representation from a single trial. Figure
1b illustrates the decision process. See the text for more details.
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FIG. 2. A process interpretation of GRT for the special case in which there are only two perceptual
dimensions (and two stimulus dimensions).

Di is negative distance-to-the-bound. In this way, rather than basing the decision
rule on yi , an equivalent alternative is to use the rule:

Respond A if Di>0, and respond B if Di<0.

This static version of GRT is illustrated in Fig. 1.
Ashby (1989) proposed the process interpretation of GRT described in Fig. 2

(illustrated for the special case in which the number of stimulus dimensions, n,
equals two). In this interpretation, there is a different sensory channel tuned to each
stimulus component or dimension. For example, when the stimuli are lines that
vary in length and orientation, channel 1 would be a size (i.e., spatial frequency)
sensitive channel, whereas channel 2 would be orientation sensitive. The crossing
lines on the left allow for the possibility that channel 2, for example, might respond
to the channel 1 component. Ashby (1989) showed that whether or not these lines
cross is closely related to whether the stimulus components are perceived integrally
(i.e., crossed lines) or separably (i.e., no crossing). The crossed lines in the middle
of Fig. 2 allow for possible lateral interactions between the channels (i.e., lateral
inhibition or excitation). Ashby showed that this more central type of perceptual
interaction is closely associated with the phenomenon of perceptual dependence.

The output of the sensory channels is the percept x, which serves as input to the
decision process. The decision process is assumed to compute the discriminant
value y=h(x). For mathematical equivalence with GRT, the output of each sensory
channel is a single numerical value on each trial, as is the output of the decision
process. Although mathematically convenient, this assumption is biologically
implausible. In real sensory channels, we expect a continuous output throughout
the duration of the trial or at least for as long as the stimulus is displayed. In the
stochastic version of GRT developed in the next section, this limitation of the Fig. 2
model is corrected.

STOCHASTIC GRT

A dynamic version of GRT can be created by making the more reasonable
assumption that the output of the Fig. 2 sensory channels changes continuously

313STOCHASTIC GENERAL RECOGNITION THEORY



throughout the course of a trial. Let x ji (t) denote the output of channel j at time
t, on a trial when stimulus i is presented. Then the stimulus percept at time t is
represented by the vector xi (t)$=[x1i (t), x2i (t), ..., xni (t)]. Thus, in the stochastic
version of GRT, xi (t) is a multidimensional stochastic process. In the particularly
simple version considered here, it is specifically assumed that xi (t) is a multivariate
normal diffusion (i.e., Wiener) process (e.g., Cox 6 Miller, 1965)��that is, each
xji (t) is a standard Wiener process, and the pair xji (t) and xki (t) may be correlated
for any values of j and k.

In a multivariate normal diffusion process, for any fixed value of t, x i (t) has a
multivariate normal distribution with mean vector t+Di and variance�covariance
matrix t7Di . The vector +Di and the matrix 7Di are called the infinitesimal mean
vector and variance�covariance matrix, respectively. The subscript D, which stands
for dynamic, distinguishes these structures from the mean vector and the variance�
covariance matrix in the static version of GRT. From a process perspective, the
assumption that the output of the channels can be modeled by a multivariate nor-
mal diffusion process is equivalent to assuming that the input to each channel is a
pure Gaussian noise process and that each channel is a perfect integrator of its
input (e.g., Cox 6 Miller, 1965). For example, the input on channel j (i.e., on trials
when stimulus i is presented) is a random process uji (t), which has the following
properties: (i) the distribution of uji (t) is identical for all values of t, (ii) uji (t) and
uji (t+2t) are independent for all values of t and 2t, and (iii) for any fixed value
of t, uji (t) is normally distributed with mean +Dji and variance _2

Dji . The inputs to
all channels form a vector ui (t) that, for any fixed value of t, has a multivariate nor-
mal distribution with mean vector +Di and the variance�covariance matrix 7Di .
Thus, the infinitesimal parameters of the multivariate diffusion process can be inter-
preted as the mean vector and the variance�covariance matrix of the vector of
inputs to the sensory channels. Since both the input and the output of each channel
are normally distributed for any fixed value of t, and since the inputs and outputs
at any two time points are independent, the infinitesimal parameters completely
describe the multivariate diffusion process.

So far, we have replaced the static perceptual representation of GRT with a mul-
tidimensional stochastic process. The next question is: Given that the percept
changes continuously over time, how can the subject select a response? It is impor-
tant to realize that, despite the fluctuating percept, the decision bound of static
GRT still provides important information about the correct response. When the
percept is on one side of the decision bound, one response is favored, and when it
crosses to the other side of the bound, the other response is favored. Thus, one
plausible response rule is for the subject to monitor the discriminant value yi=h(xi)
continuously (or perhaps, the signed distance to the bound Di). Positive values of
yi still favor response A and negative values still favor response B. When the dis-
criminant value is near zero, however, rather than choosing between two almost
equally attractive responses, the subject can instead continue processing the
stimulus, in hopes that one response will become clearly favored over the other.

In this model, the discriminant value changes randomly from moment to
moment, so it too becomes a stochastic process, denoted now by yi (t)=h[x i (t)].
Note, however, that yi (t) is univariate, no matter what the dimensionality of xi (t).
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Since positive values of yi (t) favor response A, and negative values favor response
B, a plausible strategy would be to set thresholds at numerical values A and -B and
use the decision rule:

>A, then respond A

if yi (t)=h[xi (t)]{<&B, then respond B

otherwise, continue sampling.

Of course, this defines the classic random walk or diffusion process with two
absorbing barriers that has been used to account for two-choice response time data
in psychology for more than 35 years (e.g., Laming, 1968; Link 6 Heath, 1975;
Luce, 1986; Ratcliff, 1978; Ratcliff, Van Zandt, 6 McKoon, 1999; Stone, 1960;
Townsend 6 Ashby, 1983).

The distribution of yi (t) depends on the nature of the decision bound (i.e.. dis-
criminant function) used by the decision system. From a conceptual or computa-
tional perspective, it makes little difference what type of bound is assumed. Even so,
the model is analytically tractable only if the decision bound is linear. Fortunately,
linear bounds are known to provide good accounts of data when the optimal bound
(i.e., the bound that maximizes accuracy) is linear (Ashby 6 Gott, 1988; Ashby 6

Maddox, 1990; Maddox 6 Ashby, 1993). However, it is also known that when the
optimal bound is more complex than linear (e.g., quadratic), linear bounds provide
poor fits to the resulting data (Ashby 6 Maddox. 1992; Maddox 6 Ashby, 1993).
Thus, applications of the present model to these more complex category structures
will likely require numerical methods to derive predictions.

The remainder of this article considers experimental designs for which subjects
are likely to use linear decision bounds. With a linear decision bound, the decision
system computes the discriminant process

yi (t)=b$Dx i (t)+cD+=D(t),

where bD is a vector of constants, cD is a constant, and =D(t) is a Wiener process
with zero mean and infinitesimal variance _2

D that represents criterial noise. Under
these conditions, yi (t) is itself a Wiener process. For any fixed value of t, y i (t) is
normally distributed with mean (b$D+Di+cD) t and variance (b$D7Di bD+_2

D) t.
Figure 3 illustrates this stochastic generalization of GRT. In the sensory process,

the point representation of the percept assumed by GRT is replaced by a multi-
variate diffusion process (i.e., compare Fig. 3 with Fig. 1). The percept is now
assumed to change from moment to moment as more sensory information is
collected. This causes the discriminant value yi (t), or alternatively the signed dis-
tance Di (t), also to change from moment to moment. The decision process is
assumed to cumulate these values over time. A response is emitted when the
cumulated discriminant value first crosses an absorbing barrier, at either A or -B.

It is important to distinguish between the decision bound, which partitions the
perceptual space into regions that favor the two competing responses, and the
absorbing barriers of the decisional diffusion process, which set response thresholds
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FIG. 3. The stochastic version of GRT. Figure 3a shows the perceptual representation of stimulus
i. The ellipse is a contour of equal likelihood from the multivariate perceptual distribution that is the
experiment-level infinitesimal perceptual representation, and the sample path is an example of the per-
ceptual representation from a single trial. The decision process is illustrated in Figs. 3b and 3c. See the
text for more details.
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on the decision variable (e.g., on the discriminant value yi (t)). The notion of a deci-
sion bound, although not a mathematical necessity to the developments of this
article, is conceptually important because it ties the present stochastic GRT model
to the rich and extensive GRT literature, in which the decision bound is a
fundamental construct. To avoid confusion, I will be careful to refer to the set of
all xi for which yi=h(xi)=0 as the decision bound and the response thresholds, A
and -B, as the absorbing barriers.

Analytic predictions for this stochastic GRT model are easy to derive from the
predictions of the standard diffusion process with two absorbing barriers, which are
readily obtained from a number of classic sources (e.g., Cox 6 Miller, 1965; Ratcliff,
1978; Townsend 6 Ashby, 1983). Let TA and TB denote the decision times on trials
when the subject selects response A and B, respectively. Then E(TA | i) and fA(t | i)
are the expected decision time and the probability density function of decision time
on trials when stimulus i is presented and response A is given. Now consider a
standard Wiener process with absorbing barriers at A and -B. Denote the drift on
trials when stimulus i is presented by +i and the variance by _2

i . Then it is well
known that the predicted response probabilities are given by

P(A | i)=
1&exp _&

2+iB
_2

i &
1&exp _&

2+i (A+B)
_2

i &
, P(B | i)=1&P(A | i), (1)

and the expected decision times equal

E(TA | i)=
1
+i {(A+B)

1+exp _&
2+ i (A+B)

_2
i &

1&exp _&
2+i (A+B)

_2
i &

&B
1+exp _&

2+ iB
_2

i &
1&exp _&

2+ iB
_2

i &= ,

and

E(TB | i)=
1
+i {(A+B)

1+exp _&
2+i (A+B)

_2
i &

1&exp _&
2+i (A+B)

_2
i &

&A
1+exp _&

2+ iA
_2

i &
1&exp _&

2+i A
_2

i &= .

Finally, the decision time probability density functions are given by (e.g., Ratcliff,
1978)

fA(t | i)=
1

P(A | i )
_2

i ?
(A+B)2 exp _+iA

_2
i & :

�

n=1

n sin \ nA?
A+B+

_exp {&
1
2 _\

+ i

_ i+
2

+\ n_ i?
A+B+

2

& t= ,
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and

fB(t | i)=
1

P(B | i )
_2

i ?
(A+B)2 exp _&

+i B
_2

i & :
�

n=1

n sin \ nB?
A+B+

_exp {&
1
2 _\

+ i

_ i+
2

+\ n_i?
A+B+

2

& t= .

From these equations, predictions are readily derived for the stochastic GRT model
by noting that

+i=b$D+Di+cD ,

and

_2
i =b$D 7DibD+_2

D .

These latency predictions are for categorization (or identification) time. Observ-
able RT also typically includes time for motor processes and perhaps also time for
stimulus encoding. Therefore, to derive predictions for the expected value of observ-
able RT, for example, one would typically use equations such as

E(RTA | i)=E(TA | i)+Tr

and

E(RTB | i)=E(TB | i)+Tr ,

where Tr represents mean residual time.

EQUIVALENCE RELATIONS BETWEEN THE STATIC AND
DYNAMIC VERSIONS OF GRT

Conceptually, the stochastic version of GRT is strikingly similar to the static ver-
sion. For example, in both models, the parameters of the perceptual representation
are mean vectors and variance�covariance matrices, and both models postulate a
decision bound. Because of these similarities, it is natural to ask whether there are
any conditions under which the models make identical response accuracy predic-
tions. Also, what exactly is the relation between the perceptual parameters in the
two models? To begin answering these questions, note that the stochastic model has
two more free parameters than the static model��namely, the distance to the two
absorbing barriers, A and B. If A{B, then the dynamic model will exhibit a
response bias of a type that cannot be represented in the static model. Therefore,
it is clear that a necessary condition for equivalence is that A=B in the dynamic
model. A complete set of sufficient conditions are given in Theorem 1.

Theorem 1. Consider a task in which the subject uses a linear decision bound,
and suppose there is no bias in the placement of the response barriers of the dynamic
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model (i. e., so that B=A) and that noise in the static model has a logistic distribu-
tion (rather than the usual assumption of normality). Then the static and dynamic
models predict identical response probabilities if the following three conditions hold.

(1) The two models have identical decision bounds.

(2) The mean perceptual vector for each stimulus in the static model is equal
to the analogous infinitesimal mean vector in the dynamic model; that is, for all i

+Si=+Di .

(3) The variance�covariance matrices that describe the stimulus and perceptual
noise in the two models and the criterial noise variances are related as

7Si=
?2

12(A*)2 7Di and _2
S=

?2

12(A*)2 _2
D ,

where A* is the standardized distance to the absorbing barriers in the dynamic
model��that is,

A*=
A

- b$D7DibD+_2
D

.

Proof. All proofs are given in the Appendix.

This result shows that the interpretation of the parameters of the static and
dynamic versions of GRT is strikingly similar. In both models, the decision bounds
have exactly the same interpretation, and the mean percept in the static model is
identical to the mean input to the sensory channels in the dynamic model. The only
difference between the models is in the interpretation of the noise variance
parameters. The perceptual and criterial noise variance parameters in the two
models are not equal. Instead, they are proportional, and in both cases the constant
of proportionality is inversely related to (A*)2, the squared standardized distance
to the absorbing barriers in the dynamic model. Since the distance to the barriers
in the dynamic model is under the control of the decision process, Theorem 1 says
that estimates of perceptual or criterial noise obtained from classic GRT, or from
signal detection theory (which is a special case of GRT), may often be corrupted
by decisional influences. Thus, Theorem 1 formalizes a long-held belief in signal
detection theory (e.g., Green 6 Swets, 1966; Pachella, 1974).

To better understand Theorem 1, consider a categorization or identification
experiment in which there are several different speed�accuracy conditions. For
example, suppose that in one condition, the experimenter emphasizes accuracy over
speed, and in another condition subjects are encouraged to respond as quickly as
possible, even if this extra speed costs them a few errors. Naturally, we expect
accuracy to be higher in the accuracy condition than in the speed condition. There-
fore, if a static GRT or signal detection model was fit to the data, the noise variance
estimates would be larger in the speed condition. But does it really make sense to
argue, for example, that the variability in the percept is affected by speed�accuracy
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instructions? After all, the stimulus information is identical in the two conditions.
According to the dynamic version of GRT, the subject world respond to an
increased emphasis on speed by decreasing the distance to the absorbing
barriers��that is, by decreasing A. The noise variance parameters need not change
at all. In these circumstances, Theorem 1 tells us that the perceptual noise variance
estimates obtained from the static model will increase with speed emphasis. In sum-
mary, Theorem 1 is an important result, because it tells us that estimates of percep-
tual (or criterial) noise obtained from classical static versions of signal detection
theory or GRT may often be corrupted by decisional influences. In fact, stochastic
GRT can be used to predict exactly how such estimates will change as a function
of speed stress.

Another important consequence of Theorem 1 follows from the fact that equality
holds between the static and the dynamic versions of GRT only if the absorbing
barriers in the dynamic model are equally distant from the origin (i.e., only if
A=B). In signal detection theory, a response bias occurs if the response criterion
(i.e., Xc) is set at any point for which the likelihood ratio does not equal one (i.e.,
;{1). The analogue of the response criterion in classical GRT is the intercept of
the decision bound, so in classical GRT a response bias occurs if the intercept of
the decision bound is set to a value for which the likelihood ratio is unequal to one
at all points on the decision bound. For example, in Fig. 1, a bias toward response
B is created by increasing the intercept of the decision bound. In the dynamic ver-
sion of GRT, this same response bias mechanism is available, since Theorem 1
indicates that the notion of a decision bound is identical in the static and dynamic
theories. However, in the dynamic theory, a second mechanism is available for
modeling response bias. If the distance to the two absorbing barriers is unequal
(i.e., if A{B), then there will be a bias in favor of the response associated with the
nearer barrier.

These two separate sources of bias are also explicitly modeled in Ratcliff 's (1978)
diffusion model, and Ratcliff (1985) showed that they are identifiable, in the sense
that separately manipulating these two biases leads to differential RT and accuracy
predictions. It is also straightforward to show that changing the intercept of the
decision bound has a qualitatively different effect than changing the distance to the
two absorbing barriers. To see this, consider a stochastic GRT model in which the
subject uses the unbiased intercept for the decision bound. Then at time t, the dis-
criminant value computed by the decision system equals

yi, unbiased(t)=b$Dx i (t)+cunbiased+=D(t),

where cunbiased is the unbiased intercept. Now suppose we increase the intercept by
some fixed amount 2c. In this case, the new discriminant value at time t equals

yi (t)=b$Dx i (t)+cunbiased+2c+=D(t)

=yi, unbiased(t)+2c.

In other words, introducing a response bias into the intercept of the decision bound
is equivalent to adding a constant to each discriminant value or, in other words, to
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FIG. 4. The biased random walk model introduced by Ashby (1983).

the decisional diffusion process. Ashby (1983) showed that adding such a constant
is in turn equivalent to rotating the absorbing barriers until they have a slope of
&2c (illustrated in Fig. 4). Clearly, such a rotation is not equivalent to setting the
barriers an unequal distance from the origin (i.e., to setting A{B). Balakrishnan
(1998a, 1998b) developed a new nonparametric measure of response bias, which he
applied to several data sets in which standard signal detection analysis had
indicated a significant response bias. On the basis of these analyses, Balakrishnan
(1998a, 1998b) effectively argued that when a response bias occurs, it is much more
likely that A{B than that the decision bound intercept is biased.

RT PREDICTIONS

This section investigates the RT predictions of the stochastic version of GRT.
The first question to ask is how the RT predictions vary with location of the
stimulus in the perceptual space. Theorem 2 answers this question.

Theorem 2. Consider a categorization task in which the subject uses a linear
decision bound. Then drift rate in the stochastic version of GRT increases with the dis-
tance between the infinitesimal mean percept and the decision bound. If the
infinitesimal perceptual distributions of all stimuli have identical variance�covariance
matrices (i.e., 7Di=7D , for all i), then the diffusion variance is identical for all
stimuli.

Thus, mean drift increases with the distance between the mean percept and the
decision bound. The assumption that RT decreases with the distance between the
mean percept and the response criterion has a long history in signal detection
theory (e.g.. Murdock, 1985; Thomas, 1971; see also, Pike, 1973). When incor-
porated into GRT, Ashby and Maddox (1994) called the assumption the
RT�distance hypothesis, and they argued that this simple assumption accounts for
most of the variance in RT data from categorization and two alternative identifica-
tion studies. More recent direct tests have yielded impressive empirical support for
the RT�distance hypothesis (Ashby, Boynton, 6 Lee, 1994: Maddox, Ashby, 6

Gottlob, 1998). Theorem 2 indicates that the stochastic GRT model satisfies the
RT�distance hypothesis if all infinitesimal perceptual distributions have identical
variance�covariance matrices. However, it is straightforward to show that if at least
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some infinitesimal perceptual distributions have unequal variance�covariance
matrices, then the stochastic GRT model sometimes predicts violations of the
RT�distance hypothesis.

Maddox and Ashby (1996) incorporated the RT�distance hypothesis into the
static GRT model by assuming that decision time decreases with the distance
between the percept and the decision bound. Different versions of this RT�distance
GRT model can be formulated by making different assumptions about the specific
function that relates distance and decision time. Without the rich perceptual
representation supplied by GRT, the RT�distance hypothesis predicts no difference
between error and correct RTs, and it is unable to make any predictions about the
form of the RT distributions. In contrast, the RT�distance GRT models make
specific predictions about RT distributions, and they generally predict that error
RTs will be greater than correct RTs, with this difference decreasing for stimuli
further from the bound (Ashby 6 Maddox, 1994). This latter prediction has
generally been supported in categorization RT studies, although frequently errors
are faster than corrects for stimuli where the categorization judgment is particularly
easy (e.g., Maddox et al., 1998). The relation between correct and incorrect
categorization RTs parallels the relation between correct and incorrect RTs in more
general two-choice RT tasks. In particular, in most two-choice RT studies, errors
are slower than correct responses when the discrimination is difficult, but faster
than corrects when the discrimination is easy (for reviews, see, e.g., Link 6 Heath,
1975; Luce, 1986). In addition, there is a long history of using the relative speed
of correct versus incorrect responses to test sequential sampling models (e.g.,
Laming, 1968: Pike, Dalgleish, 6 Wright, 1977; Vickers, Caudrey, 6 Willson,
1971).

Maddox and Ashby (1996) tested the ability of several specific RT�distance GRT
models to account for the RT distributions from a speeded classification study. Two
specific versions were tested. In one, RT was assumed to decrease as an exponential
function of distance-to-bound. and in the other the decrease was assumed to be a
power function of distance-to-bound. Although both models provided reasonable
accounts of the RT distributions, they also both showed systematic deviations, and
so neither can be considered an adequate account of human categorization RT
data. Of the two, the exponential model provided the better fits, but it systemati-
cally underpredicted the tails of the RT distributions. In other words, the data con-
tained more long RTs than predicted by the exponential RT�distance model. Long
RTs are most likely to occur to percepts near the decision bound. According to the
exponential RT�distance model, categorization time T is given by T=: exp(&;D),
where : and ; are nonnegative constants and D is distance-to-bound. Thus, when
a percept falls exactly on the bound, D=0, and the exponential RT�distance model
predicts that T=:. The largest RTs observed by Maddox and Ashby (1996) were
considerably greater than the value of : that provided the best fits to the entire RT
distributions.

Figure 5 shows mean categorization time as predicted by a stochastic GRT
model and by the most similar exponential RT�distance model. Note that the
stochastic GRT model predicts much longer RTs than the exponential RT�distance
model for percepts close to the decision bound. As such, the stochastic GRT model
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FIG. 5. Mean categorization time versus distance-to-bound, as predicted by the stochastic version
of GRT and by the exponential RT�distance model.

should provide a better account of the tails of categorization RT density functions
than the exponential model.

Once a drift rate is specified, the stochastic version of GRT is similar to Ratcliff 's
(1978) univariate diffusion model (see also, Ratcliff, 1981, 1985; Ratcliff 6 Rouder,
1998; Ratcliff et al., 1999). The only important difference is that Ratcliff and his
colleagues have argued persuasively for trial-by-trial variability in (mean) drift rate
and in the starting point of the diffusion process.1 As a result, in current versions
of his model, both of these parameters are assumed to be random variables. This
generally adds two free parameters to the model��a starting point variance and the
variance in mean drift.2 Once these two parameters are added to the stochastic
GRT model, it then makes identical RT predictions as the Ratcliff et al. (1999)
model. This includes predictions about mean RT, RT variance, the RT density func-
tion, the RT hazard function, and the relation between mean RT on trials when the
subject responds correctly or incorrectly. In effect, the stochastic version of GRT
provides a front end for Ratcliff 's diffusion model. The multivariate diffusion pro-
cess provides a detailed model of the perceptual representation, and the decision
bound (i.e., the cumulated discriminant process) provides an alternative mechanism
for converting the percept into a drift rate.
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1 Laming (1968) was the first to postulate variability in the starting point, and he showed that the
general effect of such variability was to increase the speed of errors relative to correct responses.

2 This latter parameter is not to be confused with the variance of the diffusion process. The variance
in mean drift specifies trial-by-trial variability in mean drift, whereas the variance of the diffusion process
specifies within trial variability in drift.



Maddox et al. (1998) reported the results of a sophisticated statistical investiga-
tion of the RTs from several standard categorization experiments. When distance-
to-bound was used as an (inverse) measure of task difficulty, the RTs from these
experiments looked very similar to RTs from other two-choice RT tasks (e.g.,
memory scanning, subitizing, YES�NO detection). For example, plots of the RT
hazard functions for different values of distance-to-bound were qualitatively identi-
cal to plots of memory scanning RT hazard functions for different memory set sizes
(reported by Ashby. Tein, 6 Balakrishnan, 1993). In both cases, the hazard func-
tions were ordered by task difficulty, they were nondecreasing on difficult trials (i.e.,
stimuli near the bound and large memory set sizes), and they were increasing-then-
decreasing on easy trials (i.e., stimuli far from the bound and small memory set
sizes). Ratcliff and his colleagues (Ratcliff 6 Rouder, 1998; Ratcliff et al., 1999)
have shown that the univariate diffusion model provides impressive fits to a wide
variety of two-choice RT data, so it is plausible that the stochastic version of GRT
will also provide good fits to categorization RT data.

As a preliminary test of this assumption, Ashby and Schwarz (1996) fit the
stochastic GRT model to data from two experiments reported by Maddox et al.
(1998). The stimuli in both experiments were circles of varying diameter containing
a radial line of varying orientation. In one experiment. the bound separating the
two categories was unidimensional (so the only relevant dimension was diameter),
and in the other experiment, it was diagonal (with a slope of &1). For each subject,
the model was fit simultaneously to the mean correct RTs and the proportion
corrects. The stochastic GRT model provided good fits to the data from both
experiments. Perhaps most impressive, however, was that the parameter values
estimated during the model fitting procedure provided good predictions of the
mean RTs from trials when the subject responded incorrectly.3 The only consistent
mispredictions occurred for mean error RT to stimuli that were far from the deci-
sion bound. In both experiments, these observed mean RTs were consistently faster
than predicted by the model (although the model correctly predicted that these
errors were faster than correct responses to the same stimuli). Ratcliff et al. (1999)
pointed out that fast errors on easy trials are empirically common, and they showed
that their diffusion model can account for fast errors by allowing trial-by-trial
variability in the starting location of the diffusion process and in the mean drift
rate. Thus, it appears likely that the ability of the stochastic GRT model to account
for the fast errors on easy trials observed by Maddox et al. (1998) could be
improved by allowing trial-by-trial variability in the starting location of the diffusion
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3 The stochastic GRT model had six free parameters in these applications: the infinitesimal perceptual
variance (i.e., the infinitesimal variance�covariance matrices were all assumed to equal 7Di=_2I, where
I is the identity matrix), the slope and intercept of the decision bound, the distance to the two absorbing
barriers (i.e., A and B), and the mean residual time. Parameter estimates were obtained via a minimum
chi-squared procedure. In the unidimensional experiment, the mean correlation (across four subjects)
between the observed and the predicted values was 0.933 for proportion correct and 0.931 for mean
correct RT. In the diagonal experiments, these correlations were 0.818 and 0.933, respectively. In the
unidimensional experiment, the correlation between observed and predicted mean error RT was 0.728,
and in the diagonal experiment, it was 0.731 (in the case of mean error RT, these are true predicted
values, since the error RTs were not used in the parameter estimation process).



process and in the mean drift rate. Although this initial application was promising,
it is difficult to draw stronger conclusions. For example, it is possible that other
categorization RT models might also have successfully fit these data (e.g. Nosofsky
6 Palmeri's, 1997, EBRW model). Certainly, much more work needs to be done to
evaluate the empirical validity of the stochastic GRT model developed here.

RELATION TO OTHER VERSIONS OF GRT

The theory developed here generalizes the discrete-time model proposed by
Ashby (1989). The perceptual representation in the two models is essentially the
same, although the continuous-time multivariate diffusion process proposed here
makes the current model more analytically tractable than the version developed by
Ashby (1989). In addition, the decision process of the current model is more general
and more natural than the decision process proposed by Ashby (1989).

Ashby and Maddox derived RT predictions from GRT by incorporating the so-
called RT�distance hypothesis into the classical version of the theory (Ashby 6

Maddox, 1991, 1994; Maddox 6 Ashby, 1996; see also, Ashby et al., 1994). As dis-
cussed above, the stochastic version of GRT developed in this article is closely
related to the RT�distance GRT models because under appropriate distributional
assumptions, the stochastic GRT model satisfies the RT�distance hypothesis (i.e..
see Theorem 2). On the other hand, the model developed here has a number of
attractive advantages over the RT�distance GRT models. Most importantly, unlike
the RT�distance models, the stochastic version of GRT is a process model, since it
makes explicit assumptions about underlying psychological processes. Second, the
stochastic version of GRT is more general than the RT�distance models, since the
stochastic model is guaranteed to satisfy the RT�distance hypothesis only under
restrictive distributional assumptions (i.e., 7Di=7D , for all i).

Theorem 1 shows that for any particular static GRT model, there exists a
dynamic GRT model (with A=B) that makes identical (or nearly identical)
response accuracy predictions. Since the static GRT model has been successful at
accounting for response accuracy data across a wide variety of identification (Ashby
6 Lee, 1990; Ashby 6 Perrin, 1988) and categorization (Ashby 6 Lee. 1990;
Maddox 6 Ashby, 1993) experiments, it is clear that the stochastic version of GRT
would be equally successful. Of course, a major difference between the static and
the dynamic versions of GRT is that the dynamic version also makes RT predic-
tions, whereas the static version does not.

CONCLUSIONS

In this article, I proposed a stochastic generalization of GRT that replaces the
static point representation of the percept of classical GRT with a multivariate diffu-
sion process. The decision process is assumed to cumulate distance-to-bound, and
this variable drives a univariate diffusion process with two absorbing barriers. The
stochastic version of GRT has a number of attractive advantages over the original
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static version. First, it makes predictions about response time as well as about
response accuracy. Second, it provides a more realistic model of the perceptual
representation than the static version of GRT. In particular, the multivariate diffu-
sion process representation is closely associated with the notion of interacting,
dynamic sensory channels. The model also provides a structure that makes it easy
to replace this part of the model with alternative versions of the sensory channels
that are even more biologically plausible (e.g., by replacing the multivariate diffu-
sion process with a multivariate Ornstein�Uhlenbeck process). Third, the stochastic
version of GRT can be viewed as enriching the perceptual representation of
Ratcliff 's (1978) diffusion model, which, arguably, has been the most successful of
all two-choice response time models. Finally, the equivalence mapping between the
stochastic and static versions of GRT indicate that traditional estimates of percep-
tual noise may often be corrupted by decisional influences.

APPENDIX

Proof of Theorem 1. From Eq. (1), we see that if B=A, then

P(A | i)=
exp \4+iA

_2
i + _1&exp \&

2+ iA
_2

i +&
exp \4+i A

_2
i +&1
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exp \2+iA
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i +&1&

_exp \2+iA
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i +&1&
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2+ iA
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i +

.

In the stochastic GRT model, +i=b$D+Di+cD and _2
i =b$D7Di bD+_2

D. Therefore,

P(A | i)=
1

1+exp _&
2A(b$D+Di+cD)
(b$D7DibD+_2

D)&
.

In the static model, if the noise is logistic, then

P(A | i)=
1

1+exp _&
?

- 3
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- b$S7SibS+_2
S
&

.
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Therefore, the two models predict identical response probabilities if and only if

?

- 3

b$S +Si+cS

- b$S 7SibS+_2
S

=
2A(b$D+Di+cD)

b$D7DibD+_2
D

.

Next, define A* as the standardized distance to either absorbing barrier in the
dynamic model��that is,

A*=
A

- b$D7DibD+_2
D

.

In terms of A*, equality holds if and only if

?

- 3

b$S +Si+cS

- b$S 7SibS+_2
S

=
2A*(b$D+Di+cD)

- b$D 7DibD+_2
D

.

The theorem follows immediately from this result.

Proof of Theorem 2. Suppose the upper absorbing barrier is associated with
category A and the lower barrier with category B. With a linear decision bound, the
drift at time t is yi (t)=b$Dx i (t)+cD+=D(t), and the mean drift is (b$D+Di+cD) t.
Therefore, the set of all stimuli that elicit a mean drift of Ct at time t satisfies

C=b$D+Di+cD

or equivalently

b$D+Di+(cD&C)=0.

Now, the decision bound is defined as the set [x(t) | b$Dx(t)+cD=0]. Therefore,
the infinitesimal mean percepts of all stimuli that elicit the same mean drift of Ct
at time t fall on a line that is parallel to the decision bound. As such, the set of all
such mean percepts are equally distant from the decision bound.

Next, let C1>C2>0, and let +1 # [+ | b$D++cD=C1] and +2 # [+ | b$D++cD=C2].
Thus, +1 elicits a larger mean drift than +2 . Now +1 falls on a line with intercept
cD&C1 , and +2 falls on a line with intercept cD&C2 . Since C1>C2 , +1 is farther
from the decision bound than +2 . A similar argument shows that, of the percepts
eliciting a negative drift, the faster drift (toward the barrier at -B) is elicited by the
stimulus with mean infinitesimal percept farther from the decision bound.

The drift variance at time t is (b$D7DibD+_D
2) t. Thus, if 7Di=7D , for all i, then

obviously, all stimuli will elicit the same drift variance.
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